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Abstract
On the basis of the Kerr spinning particle, we show that the mass
renormalization is perfectly performed by gravity for an arbitrary distribution
of source matter. A smooth regularization of the Kerr–Newman solution is
considered, leading to a source in the form of a rotating bag filled by a false
vacuum. It is shown that gravity controls the phase transition to an AdS or dS
false vacuum state inside the bag, providing the mass balance.

PACS numbers: 04.62.+v, 11.10.Gh, 12.20.−m

1. Introduction

Many of complicated quantum procedures admit an interpretation in terms of some classical
analogues. The mass renormalization in QED represents a peculiar case. It is universally
recognized due to an incredible exactness of its predictions, and its origin lies in the
classical theory of a pointlike electron; nevertheless, there are serious problems with physical
interpretation and mathematical correctness of this procedure.

In this paper, we consider a semiclassical model of a spinning particle based on the Kerr–
Newman solution of the Einstein–Maxwell theory. This solution has a double gyromagnetic
ratio, as that of the Dirac electron and may be considered as a model of electron in general
relativity [1–4].

In this paper we would like to show that the mass renormalization and regularization of the
singularities in the Kerr–Newman source are perfectly realized by gravitational fields in a very
natural manner. It allows one to conjecture that the methodological problems of QED may be
related to the ignorance of gravity. QED ignores the gravitational field arguing that its local
action is negligible. It is true, but only partially. The Kerr solution gives a counter-example
to this assertion, showing that the local action of the gravitational field may extend on the
Compton distances due to the stringy structure of the source. However, the main effect of
gravity is apparently related to a non-local action. We would like to show here that in the
semiclassical model of the Kerr spinning particle, gravity provides the mass renormalization.
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2. Renormalization by gravity

The mass of an isolated source is determined only by an asymptotic gravitational field, and,
therefore, it depends only on the mass parameter m which survives in the asymptotic expansion
for the metric. On the other hand, the total mass can be calculated as a volume integral, which
takes into account densities of the electromagnetic energy ρem, material (mechanical mass)
sources ρm and energy of the gravitational field ρg. The last term is not taken into account
in QED, but it provides perfect renormalization. For a spherically symmetric system, the
expression may be reduced to an integral over radial distance r,

m = 4π

∫ ∞

0
ρem dr + 4π

∫ ∞

0
ρm dr + 4π

∫ ∞

0
ρg dr. (1)

It looks like the expressions in a flat spacetime. However, in the Kerr–Schild background, it
is a consequence of the exact Tolman relations taking into account energy of matter, energy
of gravitational field (including the contribution from pressure) and rotation [6]. In the
well-known classical model of an electron as a charged sphere with electromagnetic radius
re = e2

2m
, integration in (1) is performed in the diapason [r0,∞], where r0 = re. The total

mass is determined by electromagnetic contribution only, and contribution from gravity turns
out to be null. However, if r0 < re, the electromagnetic contribution exceeds the total mass
and this extension is to be compensated by the negative gravitational contribution. Indeed, the
results will not depend on the cut parameter r0 and, moreover, on radial distribution of matter
at all. Some of the terms may be divergent, but the total result will not be changed, since
divergences will always be compensated by a contribution from a gravitational term.

It shows that, due to the strong non-local action, gravity may be essential for elementary
particles, on distances which are very far from the usually considered Planck scale.

3. Structure of the Kerr geometry

The Kerr–Newman solution breaks the prevailing point of view that the local action of the
gravitational field of a particle extends to its Schwarzschild radius. The Schwarzschild
singular points turn in the Kerr rotating geometry into a singular ring which extends on the
Compton sizes, since its radius a = J/m, for J ∼ h̄, is the Compton one, which exceeds the
Schwarzschild one for an electron at ∼1022. The angular momentum J = h̄/2 for parameters
of electron is so high that the black-hole horizons disappear, and the source of the Kerr spinning
particle represents a naked singular ring which may have some stringy excitations, generating
the spin and mass of the extended particle-like object—‘microgeon’ [3]. Therefore, the Kerr
source represents a closed singular string of the Compton size, and cannot be localized in the
region which is smaller than the Compton size1. It was shown that this source is indeed a string
[3, 7, 8] resembling a heterotic string of superstring theory2. Note that this singularity is a
branch line of the Kerr space which turns out to be two-sheeted, and the disc spanned on this ring
plays the role of gates to anti-world (‘negative’ sheet), where the signs of charges and masses,
and the directions of the fields are changed3. So, the Kerr string is an ‘Alice’ one, and all the
fields have to fill these ‘gates to anti-world’ which have the giant Compton sizes (∼10−11 cm).
Note that in QED it is the region of virtual photons.

One more remarkable structure of the Kerr geometry is PNC (principal null congruence).
It is a vortex of the lightlike rays (twistors) which fall on the ‘negative sheet’ on the Kerr disc,
1 In this respect, the Kerr source is similar to the Dirac wavefunction.
2 Adding a stringy tension T to the Kerr source, E ≡ m = T a, and combining this relation with J = ma, one obtains
the Regge dependence J = 1

T
m2.

3 It was discussed many times, see for example [8, 9].
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Figure 1. The Kerr singular ring and 3D section of the Kerr principal null congruence (PNC). The
singular ring is a branch line of space, and PNC propagates from the ‘negative’ sheet of the Kerr
space to the ‘positive’ one, covering the spacetime twice.

penetrate it and turn into outgoing ‘out’-fields on the ‘positive sheet’ of space (see figure 1).
PNC is a very important object since the tangent to congruence vector kµ determines the
Kerr–Schild ansatz for metric

gµν = ηµν + 2Hkµkn (2)

(where ηµν is the auxiliary Minkowski metric) and the form of vector potential

Aµ = A(x)kµ, (3)

for electrically charged solution, i.e. it determines polarization of the gravitational and
electromagnetic fields around the Kerr source and the directions of radiation for the non-
stationary excited solutions [7, 9].

The Kerr congruence is determined by the Kerr theorem [9–11] in terms of twistors. The
Kerr singular ring is a focal line of the Kerr PNC.

The Kerr–Schild form of metric allows one to consider a broad class of regularized
solutions which remove the Kerr singular ring, covering it by a matter source. There is a long-
term story of the attempts to find some interior regular solution for the Kerr or Kerr–Newman
solutions [1, 4–6]4. Usually, the regularized solutions have to retain the Kerr–Schild form
of metric and the form of Kerr principal null congruence kµ(x), as well as its property to be
geodesic and shear-free. The space part �n of the Kerr congruence kµ = (1, �n) has the form
of a spinning hedgehog. Indeed, by setting the parameter of rotation a equal to zero, the Kerr
singular ring shrinks to a singular point, and �n takes the usual hedgehog form which is used
as an ansatz for the solitonic models of elementary particles and quarks. It suggests that the
Kerr spinning particle may have relation not only to electron but also to the other elementary
particles. Indeed, the Kerr–Schild class of metric has a remarkable property, allowing us to
consider a broad class of the charged and uncharged, the spinning and spinless solutions from
a unified point of view.

4 Extra references may be found in [5, 6].
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4. Regularization of the Kerr singularity

Our treatment will be based on the approach given in [5, 6], where the smooth regularized
sources were obtained for the rotating and non-rotating solutions of the Kerr–Schild class.
These smooth and regular solutions have the scalar function H of the general form

H = f (r)/(r2 + a2 cos2 θ). (4)

For the Kerr–Newman solution function, f (r) has the form

f (r) ≡ fKN = mr − e2/2. (5)

Regularized solutions have three regions:

(i) the Kerr–Newman exterior, r > r0, where f (r) = fKN;
(ii) interior r < r0 − δ, where f (r) = fint and function fint = αrn, and n � 4 to suppress

the singularity at r = 0, and provide the smoothness of the metric up to the second
derivatives;

(iii) a narrow intermediate region r ∈ [r0 − δ, r0] which allows one to get a smooth solution
interpolating between regions (i) and (ii).

It is advisable to first consider the non-rotating cases, since the rotation can later be taken
into account by an easy trick. In this case, taking n = 4 and the parameter α = 8π�/6,

one obtains for the source (interior) a spacetime of constant curvature R = −24α which is
generated by a source with energy density

ρ = 1

4π
(f ′r − f )/	2, (6)

and tangential and radial pressures

prad = −ρ, ptan = ρ − 1

8π
f ′′/	, (7)

where 	 = r2. It yields for the interior the stress–energy tensor Tµν = 3α
4π

diag(1,−1,−1,

−1), or

ρ = −prad = −ptan = 3α

4π
, (8)

which generates a de Sitter interior for α > 0 and an anti-de Sitter interior for α < 0. If α = 0,

we have a flat interior which corresponds to some previous classical models of an electron,
in particular, to the Dirac model of a charged sphere and to the Lopez model in the form of a
rotating elliptic shell [4].

The resulting sources may be considered as the bags filled by a special matter with positive
(α > 0) or negative (α < 0) energy density5.

The transfer from the external electro-vacuum solution to the internal region (source)
may be considered as a phase transition from ‘true’ to ‘false’ vacuum in a supersymmetric
U(1) × Ũ (1) Higgs model [5].

Assuming that the transition region (iii) is very thin, one can consider the following
graphical representation which turns out to be very useful, see figure 2.

The point of phase transition r0 is determined by the equation fint(r0) = fKN(r0), which
yields αr4

0 = mr0 − e2/2. From (8), we have ρ = 3α
4π

and obtain the equation

m = e2

2r0
+

4

3
πr3

0 ρ. (9)

5 It resembles the discussed at present structure of dark energy and dark matter in universe. The case α > 0 is
reminiscent of the old Markov suggestions to consider particle as a semiclosed universe.
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Figure 2. Regularization of the Kerr spinning particle by matching the external field with dS, flat
or AdS interior.

In the first term on the right-hand side, one can easily recognize the electromagnetic mass
of a charged sphere with radius r0,Mem(r0) = e2

2r0
, while the second term is the mass of

this sphere filled by a material with a homogeneous density ρ, Mm = 4
3πr3

0 ρ. Thus, the
point of intersection r0 acquires a deep physical sense, providing an energy balance by the
mass formation. In particular, for the classical Dirac model of a charged sphere with radius
r0 = re = e2

2m
, the balance equation yields the flat internal space with ρ = 0. If r0 = rdS > re,

the interior is de Sitter space, and a material mass of positive energy Mm > 0 gives a
contribution to the total mass m. If r0 = rAdS < re, this contribution has to be negative
Mm < 0, which is accompanied by the formation of an AdS internal space.

5. Transfer to a rotating case

All the above treatments are valid for the rotating cases, and for the passage to a rotating case,
one only has to set

	 = r2 + a2 cos2 θ, (10)

and consider r and θ as the oblate spheroidal coordinates [6]. It looks wonderful, however it
is a direct consequence of the structure of function H, in which the nominator is independent
of the rotation parameter a.

The Kerr–Newman spinning particle with a spin J = 1
2h̄ acquires the form of a

relativistically rotating disc which foliates on the rigidly rotating ellipsoidal shells, and the
board of the disc has v ∼ c [6]. The corresponding stress–energy tensor (8) describes in this
case the matter of source co-rotating with this disc coordinate system. The disc has the form
of a highly oblate ellipsoid with thickness r0 and radius a = 1

2h̄/m, which is of order of the
Compton length. The interior of the disc represents a ‘false’ vacuum having superconducting
properties [4, 5], so the charges are concentrated on the surface of this disc, at r = r0. Inside
the disc, the local gravitational field is negligible.

6. Non-stationarity and zero-point radiation

Classical models of a spinning particle encounter an unavoidable conflict with quantum theory.
The Kerr singular string acquires electromagnetic wave excitations [3, 7, 8]. In classical theory,
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these excitations lead to a radiation which breaks axial symmetry of the Kerr–Newman solution
and leads to non-stationarity. As a result, only an average metric takes the Kerr–Newman form.
In the Kerr–Schild formalism [2], electromagnetic excitations are related to a field γ (x) which
induces electromagnetic radiation along the Kerr congruence kµ and non-stationarity of the
solutions. This radiation also leads to infrared divergence of the mass, and there are arguments
that this radiation has to be renormalized [3, 7, 8], setting the field γ = 0. In quantum theory,
oscillations are stationary and the absence of radiation caused by oscillations is postulated,
although the radiation is present in QED too, being related to radiative corrections: the field
of virtual photons, vacuum zero-point field and vacuum polarization.

In a semiclassical approach, one can use the receipt of the quantum field theory in
curved spaces [12], which takes into account the quantum effects concentrated in the divergent
vacuum zero-point field. By the transfer to the classical Einstein–Maxwell theory, these
quantum vacuum fields have to be subtracted from the classical stress–energy tensor by a
regularization [12],

T (reg)
µν = Tµν − 〈0|Tµν |0〉, (11)

which has to satisfy the condition

T (reg)µν,µ = 0. (12)

It was conjectured in [7–9] that regularization of the Kerr–Newman stress–energy tensor
has to be related to a subtraction of electromagnetic radiation caused by the field γ which
propagates along the Kerr congruence kµ, and involves non-stationarity by a loss of mass.
Twofoldedness of the Kerr geometry confirms this point of view, since the outgoing radiation
on the ‘positive’ out-sheet of the metric is compensated by an ingoing radiation on the
‘negative’ in-sheet. It shows that the field γ has to be identified with the vacuum zero-point
field and may be subtracted from the stress–energy tensor by means of regularization, which
has to satisfy condition (12). Such regularization may be performed [7, 8] and leads to some
modified Kerr–Schild equations [7]. It shows that electromagnetic excitations on the Kerr
background are similar to the Casimir effect and may be interpreted as a resonance of the
zero-point fluctuations on the (superconducting) source of the Kerr spinning particle [7, 8].

Although the exact non-trivial solutions of the regularized system have not been obtained
so far, there were obtained corresponding exact solutions of the Maxwell equations which
show that any ‘aligned’ excitation of the Kerr geometry leads to the appearance of some
extra ‘axial’ singular lines (strings) which are semiinfinite and modulated by the de Broglie
periodicity [7, 8]. The recently obtained multiparticle Kerr–Schild solutions [11] support
this point of view, leading to the conclusion that the radiating twistorial structure of the
Kerr PNC belongs to the vacuum zero-point field, pointing out on the twistorial texture of
vacuum [7, 13].
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